
UNIX

Data Filters
UNIX

Unix Data Files

 Sort

 Paste

 Cut

 Join

 Uniq

 Database Design

paste, cut, join, and uniq

14

14. Data Filters:sort, paste, cut, join, and uniq

There is a set of filters that perform data operations on an input stream. These data
filters, receive data and generate modified output. The data filters are designed to operate
on files whose text is organized into fields of data much like a single file database. Each
line in the file is a record and each word in the line constitutes a field in that record. The
data filters take as their input a file containing such records, and outputs records selected
on the basis of a given criteria. These data filters can also be used to effectively
manipulate any string of text. For example, you can use them to obtain filename prefixes.
 There are five data filters: sort, cut, paste, join, and uniq. The sort filter
generates a sorted version of the file in which all records are sorted alphabetically in
ASCII order according to a specified field. sort is also a more general purpose filter
that you can use to sort lines in any text file. The cut filter outputs all entries for a
selected field in a data file. The paste filter generates output that combines the records
of several data files. The join filter generates output that combines the records in two
files by comparing the values of specified fields. The uniq filter detects fields that have
the same values. It allows you to count how many fields have the same values as well as
eliminating any repetitions from its output. This chapter will first examine the concept of
Unix data files, and then discuss each of the data filters in turn.
 Though the data filters cannot perform many of the complex operations found in
professional database management software, you will find that they can perform many of
the more common operations. You can sort data and selectively display fields. You can
also selectively retrieve matching records in different files. You can even combined data
filters to form complex queries. For example, you could use the join filter to combine
selected records from different files and then pipe the output to the sort filter to sort the
results.

UNIX Data Files

 In Unix, a text file can be arranged in such a way that it can be interpreted as a
data file. A data file consists of fields and records. Each record consists of a
predetermined set of fields. The file itself consist of character text data, just like any
other text file. However the character data is organized in a database format. Each line
in the file constitutes a record. Each field is delimited on a line with either spaces, tabs,
or a specially designated delimiter such as a colon. Data filters can then take the contents
of such a file as input and generate modified output.
 For example, a book data file may consist of records whose fields contain title,
author, price, and publisher of a book. The records and fields can be represented in a two
dimensional format. The fields are columns across the top of the data and records are
rows of data. Below is an example of the data in a book data file.

 Fields
 Title Author Price
 Publisher
Records 1 Tempest Shakespeare 15.75
 Penguin
 2 Christmas Dickens 3.50
 Academic
 3 Iliad Homer 10.25
 Random
 4 Raven Poe 2.50
 Penguin

 You can enter such data to a text file, making it a data file. Each line is a record.
Each set of characters separated by a space or tab is a field in the record. Records can be
typed in by the user with any text editor. Data operations such as sort and cut can then
generate as output selected records or fields. In all cases the original files are left
untouched. In the next example, a user has created a data file called books.

books
Tempest Shakespeare 15.75 Penguin
Christmas Dickens 3.50 Academic
Iliad Homer 10.25 Random
Raven Poe 2.50 Penguin

 $ cat books
 Tempest Shakespeare 15.75 Penguin
 Christmas Dickens 3.50 Academic
 Iliad Homer 10.25 Random
 Raven Poe 2.50 Penguin

Sort

 As described in chapter 7, the sort filter outputs a sorted version of a file. sort
is a very powerful utility with many different sorting options (see Table 14-1). These
options are primarily designed to operate on files arranged in a data format. In fact, sort
can be thought of as a powerful data manipulation tool, arranging records in a data file.

sorting lines: basic sort operations

 The sort filter sorts character by character on a line. If the first characters in two
lines are the same, sort will sort on the next characters. In the next example, the sort
filter outputs a sorted version of perishables. Notice that the second and third lines begin
with the same word, and differ on the first characters of the second words, vegetables and
citris.

perishables
vegetable soup
fresh vegetables
fresh citris
lowfat milk

 $ sort perishables
 fresh citris
 fresh vegetables
 lowfat milk
 vegetable soup

 You can, of course, save the sorted version in a file or send it to the printer.

 $ sort perishables > slist
 $ sort perishables | lp

 You can use sort to sort the contents of several files. You list the files to be
sorted as arguments to sort. In the next example, the contents of perishables and
packaged are sorted into a combined list. This sorted version is then redirected to plist.

packaged
canned milk
frozen vegetabless
tomato paste
chocolate milk

 $ sort perishables packaged > plist
 $ cat plist
 canned milk
 chocolate milk
 fresh citris
 fresh vegetables
 frozen vegetables
 lowfat milk
 tomato paste
 vegetable soup

 Since users usually want to save their sorted data in a file, the sort filter provides
an option that designates a file in which to save its sorted output. The -o option followed
by a filename will save the sorted output to that file. It performs the same function as
redirection would. In the next example, the user sorts perishables and saves the sorted
data in slist using the -o option.

 $ sort perishables -o slist
 $ cat slist
 fresh citris
 fresh vegetables
 lowfat milk
 vegetable soup

 You may, at times, want to actually sort your original input file. This involves
modifying your input file. To do this you may be tempted to redirect the output of sort
to your original input file. This would be a mistake. Remember that the redirection
operator executes before any Unix command, destroying a file if it already exists. In the
command sort perishables > perishables, the redirection operator will first
erase the perishables file to prepare it to receive input, and then the sort filter will
attempt to read the just erased perishables file.
 If you want to modify your input file, overwriting it with a sorted version of itself,
then you can use the -o option. In the next example, the sort filter sorts the
perishables file and then overwrites the perishables file with the sorted data.

 $ sort perishables -o perishables
 $ cat perishables
 fresh citris
 fresh vegetables
 lowfat milk
 vegetable soup

sorting data

 By default the sort filter sorts data in alphabetic order. This alphabetic order is
determined by the character set currently used by the system. This is usually the ASCII
character set. The character set determines the sequence in which characters are ordered.
A distinction is made between upper and lower case. The character set also has
individual numbers, 0-9, which are considered characters. A number is treated as a
sequence of individual numeric characters.
 Such an ordering of the character set can lead to unintentional sorting results.
Suppose you are mixing upper and lower case characters in your sort. Then any lines
beginning with uppercase characters will be placed at the beginning of the sorted list
because uppercase characters come before lowercase characters in the character set. The
sort filter has several options that allow you to overcome the limitations of the character
set. You can sort regardless of case, or sort numbers based on their numeric value. You
can even sort in reverse order.

Ignoring case: -f

 In the character set, the upper and lower case of a character are different
characters. 'A' and 'a' are two distinct characters. All upper case characters come before

lowercase characters in the character set ordering. sort will always place any uppercase
character before a lowercase character. 'Z' will come before 'a'. For example, in the
ASCII character set characters are represented by a sequence of integer numbers from 0
to 255. The numbers representing lowercase characters are from 97 to 122, whereas
uppercase characters are 65 to 90. A lowercase 'b', 98, will always be greater than an
uppercase 'B', 66. In the next example, the perishablesU file has several uppercase
characters at the beginning of a line. A sort will place the lines beginning with uppercase
characters at the top of the sorted list.

perishablesU
Vegetable soup
fresh vegetables
Fresh citris
lowfat milk

 $ sort perishablesU
 Fresh citris
 Vegetable soup
 fresh vegetables
 lowfat milk

 With the -f option you can instruct sort to ignore any case differences. A
lowercase 'a' and an uppercase 'A' will have the same place in the sorted data. 'a' will
come before 'Z' and 'C' after 'b'. The -f option is called the fold option because it
actually folds lowercase characters into uppercase, treating the whole file as if it were
written in uppercase. In the next example the sort filter with the -f option ignores any
upper or lower case distinctions in performing the sort.

 $ sort -f perishablesU
 Fresh citris
 fresh vegetables
 lowfat milk
 Vegetable soup

Sorting numbers: -n
 In a character set, numbers are interpreted as individual characters and compared
accordingly. In the next example, each line in the myitems file begins with the number
of items needed. A sort on the list will sort on the numbers as characters, not as numeric
values. The character '1' comes before the character '3' which comes before '4', and then
'8'.

myitems
8 vegetable soup
12 fresh vegetables
45 fresh citris
3 lowfat milk

$ sort myitems
 12 fresh vegetables
 3 lowfat milk
 45 fresh citris
 8 vegetable soup

 The sort filter has an option, -n, that allows you to sort numbers according to
their numeric value. Negative numbers are sorted accordingly. With the -n option, the
number 12 will be placed after the number 8. In the next example, the numbers are sorted
by their numeric value.

 $ sort -n myitems
 3 lowfat milk
 8 vegetable soup
 12 fresh vegetables
 45 fresh citris

As an example, suppose that you want to find the largest file in your directory.
The output of ls -s list all files and their sizes by blocks. The size is the first field.
You could filter this output through a sort filter with the -n command to place the
filename of the largest file at the end of the output, and then use the tail filter with the -1
option to just display that filename.

 $ ls -l | sort -n | tail -1

Reverse sorts: -r
 By default, sort orders lines in ascending order, from the lesser value to the
greater value such as 'a' to 'z'. However, with the -r option, you can sort lines in
descending order, starting from greater to lesser values. The -r option stands for reverse.
Alphabetic values will be sorted beginning with 'z' and descending to 'a'. Numeric value
will begin with the largest number and descend toward zero. In the next example, the
perishablesU file is sorted in reverse order. Notice the combined use of both the -r and
-f option, -rf.

 $ sort -rf perishablesU
 Vegetable soup
 lowfat milk
 fresh vegetables
 Fresh citris

 In a numeric sort, the -r option will display the largest number first. In the next
example, the myitems file is sorted numerically in reverse order.

 $ sort -rn myitems
 45 fresh citris
 12 fresh vegetables
 8 vegetable soup
 3 lowfat milk

Sorting Fields

As previously noted, a file can be organized with a data format. Each line is a record and
each word is a field in the record. In the next example, the listdata file organizes each
record into four fields. The first field is the number of items, the second field is the food
type, the third field is the food name, and the fourth field is the price. Each field is
separated by a space that acts as a delimiter between fields.
 With selected fields in a file you can form a key with which the sort filter can
sort the file. The key can be any sequence of fields. Each field is number beginning
from 1. You specify a key using a combination of the +num option for the first field in
the key and the -num option for the last field in the key. The + option is slightly odd in
that the number you specify with it, is actually the number of fields you skip before the
first field in the key. A +2 means the key begins with the 3rd field, not the 2nd field.
The first 2 fields are skipped. However, the number that you specify with the - option is
the last field in the key. A -4 means that the 4th field is the key's last field. In the next
example and in figure 14.1, the user specifies a key consisting of only the second field
using the options: +1 -2. The +1 option skips the first field to begin the key at the 2nd
field. The -2 option ends the key at the second field. In this way, the user sorts only on
the one field, ignoring the fields before and after it.

listdata
8 vegetable soup 1.75
12 fresh vegetables 7.50
45 fresh citris 3.00
3 lowfat milk 2.90

 $ sort +1 -2 listdata
 12 fresh vegetables 7.50
 45 fresh citris 3.00
 3 lowfat milk 2.90
 8 vegetable soup 1.75

 Should you want to sort on just the first field you can specify the + option of the
key as +0. This means that zero number of fields are skipped, so that the key begins with
the first field. The -1 option ends the key at the first field. The file will then be sorted

only on the first field. Each key can be qualified by its own sort option. In the next
example, the key specifies the first field and qualifies it as a numeric sort with the n
option: +0n -1.

 $ sort +0n -1 listdata
 3 lowfat milk 2.90
 8 vegetable soup 1.75
 12 fresh vegetables 7.50
 45 fresh citris 3.00

8 vegetable soup 1.75
12 fresh vegetables 7.50
45 fresh 3.00
3 lowfat milk 2.90

45 fresh 3.00
12 fresh vegetables 7.50

3 lowfat milk 2.90
8 vegetable soup

1.75

s o r t

$ s o r t - b + 1 - 2 l i s t d a t a > f o o d t y p e l i s t

lis tdata

+1 skips the first field to
begin the key for the sort
at 2rd field, and -2 ends
the key at the 2nd field.

fields 1 2 3 4

+1

B egin key on
2nd field

8 vegetable soup 1.75
12 fresh vegetables 7.50
45 fresh 3.00
3 lowfat milk 2.90

45 fresh 3.00
12 fresh vegetables 7.50
3 lowfat milk 2.90
8 vegetable soup 1.75

E nd key at
the 2nd field

-2

foodtypelist

citris

citris

citris

citris

Figure 14.1. Sorting on a single field using a key specification consisting
of the + and - options.

 If you do not specify the last field in a key, then sort assumes that the remaining
fields in the line form the key. The +2 option used without any -num option, will include
all fields from 3 to the end as part of the key. Used in this way, you can think of the
+num option as a fields skipper, skipping over initial fields and sorting on the remainder
of the line. Notice that you specify a particular field with a number that is one less than
its own position. +1 skips the first field and starts the sort on the 2nd field. +3 skips the
first three fields and starts the sort on the 4th field. In the next example, the user sorts the
listdata file beginning with the third field. To do this the user must skip the first 2 fields.

 $ sort +2 listdata
 45 fresh citris 3.00
 3 lowfat milk 2.90
 8 vegetable soup 1.75
 12 fresh vegetables 7.50

 To sort the last field you need only to skip the preceding fields. In the next
example the user skips the first three fields to sort on the last field.

 $ sort -n +3 listdata
 8 vegetable soup 1.75
 3 lowfat milk 2.90
 45 fresh citris 3.00
 12 fresh vegetables 7.50

 For example, suppose you want to list your files sorted by month, listing all those
updated in the same month together. The ls -l command output full data about each
file including its date. The month field would be the fifth field for with you use the
option +4. The command ls -l | sort +4 then lists your files sorted by month.

 $ ls -l | sort +4

 When working with fields, you need to pay special attention to delimiters. In the
listdata file example single spaces were used as delimiters. The space is the default
delimiter for the sort filter. However, often a file will be arranged so that the data
values in each field line up. You can do this either by using a tab instead of a space to
separate fields, or by adding in leading spaces to line up the fields. In the listdataS file
displayed below, the different fields are lined up by adding leading spaces. However, in
the case of leading spaces, the sort filter will take one space as a field separator, but
include the others as part of the field value and sort on them. In the character set, a space
is always less than any alphabetic character. This means that fields with leading spaces
will be ordered according to the number of spaces, beginning with the field with the most
spaces. In the next example, the user sorts on the third field, skipping the first two fields,
but including leading spaces. Notice that 'vegetables' is ranked second where it should be
ranked last.

listdataS
8 vegetable soup 1.75
12 fresh vegetables 7.50
45 fresh citris 3.00
3 lowfat milk 2.90

 $ sort +2 -3 listdataS
 45 fresh citris 3.00
 12 fresh vegetables 7.50
 3 lowfat milk 2.90
 8 vegetable soup 1.75

 You can overcome the problem of leading spaces by using the -b option. The -b
option instructs sort to ignore leading spaces in any specified key fields. On some
recent versions of Unix the -b option is a default for any field key specification and will
not have to be added. In such versions, leading spaces are automatically removed when
fields are sorted. In the next example, the sort filter with the -b option, sorts the data
on the third field ignoring leading spaces.

 $ sort -b +2 -3 listdataS
 45 fresh citris 3.00
 3 lowfat milk 2.90
 8 vegetable soup 1.75
 12 fresh vegetables 7.50

 You can also enter the -b option as a qualifier to a specific key. The +2b -3 key
specification applies the -b option only to the third field.

Subsorts
 You can instruct sort to perform several sub-sorts by using several key
specifications. With each key, sort performs a sub-sort on that field. For example, you
could sort listdata by food type and then by price using the key specifications +1 -2 and
+3 -4. First the list will be ordered by food type and then any food types that are the
same are then ordered by price. Both 'citris' and 'vegetables' have a food type of 'fresh'.
They would be further sorted by price. In the example, the user performs the subsort on
the fourth field. Notice that the fourth field is further qualified as a numeric field with the
n option.

 $ sort -b +1 -2 +3n -4 listdataS
 45 fresh citris 3.00
 12 fresh vegetables 7.50
 3 lowfat milk 2.90
 8 vegetable soup 1.75

 You need to take into account that a subsort is only performed on those records
whose compared fields in the primary sort were the same. If you were to use just +1 as
the key for the first sort, then sort compares the line beginning with the second field and
including all the others. Since the rest of the lines are not the same, no subsort is
performed. In this case, for a subsort to be performed on any lines, their second, third,
and fourth fields would have to be the same.

Character Keys
 Though a key consists of fields, you can, within those fields skip a number of
characters so that the key actually begins further on in the field instead of at its
beginning. The number of characters to be skipped is specified with a preceding period
and is attached to the either the + or - options. +2.4 begins the key at the 5th character
in the third field. The first 2 fields are skipped, and then within the 3rd field, the first 4
characters are skipped. The + option can be said to have the format +f.c where f is the
number of the fields to be skipped, and c is the number of characters to be skipped in the
selected field. The same is true for the - option.
 As an example, suppose that you want to skip the first two character in the fourth
field of the listdataS file, and sort only on the cents and not the dollar value. Your key
would have to skip the first two characters in the key field. The key specification would
be +3.2nb -4. Skip the first 3 fields and then the first 2 character in the 4th field.
Notice that the two option qualifiers, n and b, are added at the end of the character
specification.

 $ sort +3.2nb -4 listdataS
 45 fresh citris 3.00
 12 fresh vegetables 7.50
 8 vegetable soup 1.75
 3 lowfat milk 2.90

Field Delimiters
 You could also use a specific delimiter such as a tab or a colon for each field,
instead of spaces. If you should use such a designated delimiter, you could then include
spaces in your fields, giving you fields consisting of several words. However, if you use
your own delimiter, you need to specify it on the command line using the -t option. The
-t option is followed immediately by a character that is then used by sort as the field
delimiter for the input. In the next example, the booksC file uses the colon as the
delimiter for each field. The user then sorts on the first field, the book titles, and
specifies the field delimiter with a -t options, -t:.

booksC
War and Peace:Tolstoy:15.75:Penguin
Christmas carol:Dickens:3.50:Academic
Iliad:Homer:10.25:Random
Raven:Poe:2.50:Penguin

 $ sort -t: booksC
 Christmas carol:Dickens:3.50:Academic
 Iliad:Homer:10.25:Random
 Raven:Poe:2.50:Penguin
 War and Peace:Tolstoy:15.75:Penguin

 You could also use a tab as a field delimiter. However, when you specify a tab as
the character used for the -t option, you need to first quote it with a backslash. A tab on

the command line is normally interpreted by the shell as just another space separating
arguments. You first enter the -t, a backslash, and then hit the tab key. The tab
character itself does not show up. In the next example, the booksTD file uses tabs to
delimit each field. The user then sorts the file based on the second field, the authors. The
field delimiter is specified with the option: -t\tab. The tab, of course does not show.

booksTD
War and Peace Tolstoy 15.75 Penguin
Christmas carol Dickens 3.50 Academic
Iliad Homer 10.25 Random
Raven Poe 2.50 Penguin

 $ sort -t\ +1 -2 booksTD
 Christmas carol Dickens 3.50 Academic
 Iliad Homer 10.25 Random
 Raven Poe 2.50 Penguin
 War and Peace Tolstoy 15.75 Penguin

TTAABBLLEE 1144--11

The sort filter:

 sort
 The sort filter sorts the lines it receives as input. You use it to generate a

sorted version of a file. You can sort in a variety of ways such as alphabetic
sorts, reverse sorts, and numeric sorts. You can sort on a given field or range
of fields. The syntax for the sort filter is the keyword sort followed by
any options and then a list of file names. sort can also receive its input
from the standard input. You can pipe data into sort to be sorted.

 $ sort -option file-list
 $ sort -n perishables

 basic sort operations

 -o filename Save the output of sort in filename. You can use this option to safely

overwrite the original input file, giving you a sorted file.
 $ sort perishables -o perishables

 c Check only to see of the file is sorted. If the file is not sorted, sort displays

an error message. Otherwise it displays nothing.

 m Merge previously sorted files.

 u Output repeated line only once.

 sorting data

 d Dictionary sort - ignores any characters in the character set that are not

alphabetic, numbers, or blanks. Punctuation characters and control
characters are ignored.

 f Ignore case. Lowercase characters are folded into uppercase characters.
 $ sort -f perishables

 i Ignore non-printing characters.

 M Sort months. Fields whose values are the names of the month are sorted.

The first three characters of the name are examined and changed to
uppercase for sorting: JAN, FEB, JUN, NOV. They are order according to
the months of the year beginning with January.

 n Numeric sort - sort according to the numeric value of a field, not its

character value. The -b option is automatically applied, ignoring any leading
blanks.

 $ sort -n perishables

 -r Sort in reverse order.
 $ sort -r perishables

 sorting fields

 b Ignore any leading blanks before a field.
 $ sort -b perishables

 +num The number of fields to skip on a line. Sorting begins from the next field.

+2 skips the first two fields and begins sorting on the third field.
 $ sort +2 perishables

 -num The number of field where sorting on a line ends. -3 will stop a sort on a

line at the third field. Fields after the third field would not be used in the
sort. This option is often used in conjunction with the + option to isolate a
field, and restrict the sort to that field. +2 -3 sorts only on the third field.
You can also specify a range of fields: +1 -4.

 $ sort +2 -3 perishables

 -tc Specify a new field delimiter, c. The default is a space.
 $ sort -t: +2 booksC
 $ sort -t\tab +2 booksT

Paste: combining records

 The paste command generates output that joins each line in different files into
one line. By default, the lines from each file are placed on the same line, separated by a
tab. In regards to data files, you can think of paste as joining the records in different
files into one record. In effect, you add new fields to a record. You can also think of
paste as joining files together side by side, each file contributing its own set of columns.
In the next example and in figure 14.2, the lines of the files foods and costs are joined
together in the output. The output is redirected to the mylist file.
 The cut filter references a specific field using the -f option and a number. The -
f option instructs cut what fields to copy. The -f option is followed by the number of
the field you want. All fields are automatically numbered, beginning with 1. There is no
default. Whenever you use cut you need to have either a -f or -c option, specifying the
column of data that you want to operate on. Furthermore, the cut filter with the -f
option assumes that fields in your file are delimited with tabs, not spaces. -f and -c
along with other cut options are listed in Table 14-3. In the next example, the listdataD
file has its fields separated by tabs. The cut filter then copies out the second field in the
listdataD file.

listdatadD
8 vegetable soup 1.75
12 fresh vegetables 7.50
45 fresh citris 3.00
3 lowfat milk 2.90

 $ cut -f2 listdataD
 vegetable
 fresh
 fresh
 lowfat

 You can copy several fields by listing their field numbers separated by commas
after the -f option. You can even reference a range of fields using the first field number
and the last number separated by a minus sign. In the next example and in figure 14.3,
the fields from 1 and 3 are output.

 $ cut -f1,3 listdataD
 8 soup
 12 vegetables
 45 citris
 3 milk

 In the next example, the user specifies a range for fields 2, 3, and 4: 2-4.

 $ cut -f2-4 listdataD
 vegetable soup 1.75
 fresh vegetables 7.50
 fresh citris 3.00
 lowfat milk 2.90

8 soup
12 vegetables
45 fruit
3 milk ��

��
��

cut

mylist
listdataD

fields 1 2 3 4

-f1,3 copies fields 1 and 3

8 vegetable soup 1.75
12 fresh vegetables 7.50
45 fresh fruit 3.00
3 lowfat milk 2.90

8 vegetable soup 1.75
12 fresh vegetables 7.50
45 fresh fruit 3.00
3 lowfat milk 2.90

8 soup
12 vegetables
45 fruit
3 milk

$cut -f1,3 listdataD > mylist
Figure 14.3. The cut filter.

 Data files can be arranged in a fixed file format or a delimited file format. A
delimited file format has its field separated by a designated delimiter. The listdataD file
has been delimited with tabs. But it could also be delimited with any other character you
choose. Often the delimiter is a character that is not often used such as a comma or a
colon. Delimited files have the advantage of allowing field values of any length. A
delimiter always tells where a field ends. By default, the cut filter will assume a tab
delimiter in the file. If your file uses a different delimiter, you have to specify that
delimiter with the -d option. For example, if your delimiter is a colon you need to
include the option -d:. If your fields are separated by spaces, you need to specify a
space as the delimiter: -d' '. Be sure to quote the space so that it will not be interpreted
by the shell. In the next example the listdataC file is delimited with colons. The user
then copies the first and third fields, and specifies that the colon is the delimiter used in
this file.

listdataC
8:vegetable:soup:1.75
12:fresh:vegetables:7.50
45:fresh:citris:3.00
3:lowfat:milk:2.90

 $ cut -f1,3 -d: listdataC
 8:soup
 12:vegetables
 45:citris
 3:milk

 You can combine the cut filter with other filters to output selected fields of data.
For example, the ls -l command outputs full information about all the files in your current
directory, beginning with permissions and including links, size, date as well as filenames.
Suppose you only want to list permissions and filenames. You could filter the output of
ls -l through a cut filter to select only the fields for permissions and filenames. If you
look at the output of the ls -l command you will notice a data format with each field
seperated by spaces. The data field for filenames is the 8th and last field. The cut
command cut -f1,8 will then output only the permissions and filenames, the 1st and
8th field. Remember, however, that the cut command operates on fields seperated by
tabs. You need to first replace the seperating spaces in the ls -l output to tabs before
having cut operate on it. This you can do using a sed filter with the editing command
's/spacespace*/tab/g' (the space and tab characters will not show so the command
will appear as: 's/ */ /g'). There are two spaces entered before the asterisk
indicating a match on one or more spaces. The next example shows the

 $ ls -l | sed 's/ */ /g' | cut -f1,8

 Many data files have a fixed length format. In this format, each field takes up a
fixed number of characters in a line. In the listdataS file, fields are separated by spaces.
The first field takes up three characters. The third field takes up 11 characters. Each
field begins at a fixed position on the line. In the listdataS file, the second field always
begins at the 4th character, and the fourth field begins at the 25th character. Taking this
information into consideration, you can effectively reference a field using the beginning
and ending character of the field on the line.
 Using the -c option, the cut filter can reference character positions in a fixed
length format file. The -c option can reference characters on a line, rather than a field. -
c stands for column and takes a number or set of numbers as its argument. The numbers
refer to character columns. Instead of looking at a file horizontally, line by line, you can
look at it vertically, by columns of characters. The fourth column in the mylist file
consists of the characters 'v', 'f', 'f', and 'l'. If you want to reference the second field, you
can specify a range of columns beginning with 4 and ending with 13: -c4-13. You can
think of the numbers used with -c as representing a position of a character on a line. -
c4-13 references characters beginning at the 4th position through to the 13th position.
In the next example, the user copies out the first and third fields, referencing by the range
of their character columns.

listdataS
8 vegetable soup 1.75
12 fresh vegetables 7.50
45 fresh citris 3.00
3 lowfat milk 2.90

$ cut -c1-3,14-24 listdataS
8 soup
12 vegetables
45 citris
3 milk

 A number and a minus sign alone reference the rest of the line beginning with the
character at that position. -c14- references all characters from the 14th position to the
end of the line. In the next example, the user simply references the rest of the line
beginning the character at position 14. This happens to be the beginning of the third
field.

 $ cut -c14- listdataS
 soup 1.75
 vegetables 7.50
 citris 3.00
 milk 2.90

 The output of the ls -l command also has a fixed length format. To output the
permission and name fields you could use the specification c1-10,c46-. The
permissions field begins with the 1st character and ends at the 10th. The filenames field
begins at the 46th character and continues to the end of the line. Notice that by using the
character specification there is no need to insert tab delimiters.

 $ ls -l | cut -c1-10,46-

TTAABBLLEE 1144--33

The cut filter:

 cut
 The cut filter copies out specified fields or columns in a file. You must

always use either the -f option or the -c option with cut.

 $ cut -option file-list
 $ cut -f2,3 listdataD

 -fnum The -f option specifies what fields you want copied out of a file.
Fields are numbers from 1. You can specify more than one field by
separating them with a comma, or you can specify a range of fields
using a dash between numbers.

 -fnum1,num2 Specify fields to be cut out..
 $ cut -f1,3 listdataD
 -fnum1-num2 Specify a range of fields beginning with num1 and

ending with num2.
 $ cut -f2-4 listdataD

 -cnum-num The -c option allows you to specify columns of characters to be cut

out.
 $ cut -c20-35 listdataS

 -ddelimiter-list The -d option allows you to specify your own delimiter to look for

in a file.
 $ cut -d: -f2-4 listdataC

 -s Ignores any lines that do not have a delimiter in them. This option

can only be used with the -f option. You use it to pass over lines
with no data, such as headings, titles, or empty lines.

 $ cut -f2-4 -s listdataD

Join: Comparing Fields

 The join filter compares the values of a designated field in one file with that of a
field in another file. If the fields in each file have the same value, then the lines in each
file are joined into one line. In effect, join is performing a conditional paste. Only
those lines whose designated fields match, will be joined and output. The fields that you
compare in each file must meet one condition before join can effectively operate. They
must be sorted.
 You use the -j option to specify what field you want compared. The -j option
takes as its argument the number of the field to be joined in each file. There is a space
between the -j option and the field number. As in the paste and cut filters, fields are
numbered from 1. Table 14-4 list the -j option along with other join options.

 $ join -j fieldnum filelist

 In the next example the lines in two files are selected and combined if their first
field matches. To simplify the example, the first fields are already sorted. The foodlist
file consists of three fields: items, food types, and price. The counts file consists of two
fields: items and the number of each item. Notice that both the foodlist and counts files

have an items field. The items field in each will be compared and used to join lines in the
two files.

foodlist
citris fresh 3.00
milk lowfat 2.90
milk canned 1.50
soup vegetable 1.75
vegetables fresh 7.50

counts
milk 3
soup 8
vegetables 12

 $ join -j 1 foodlist counts > mylist
 $ cat mylist
 milk lowfat 2.90 3
 milk canned 1.50 3
 soup vegetable 1.75 8
 vegetables fresh 7.50 12

 Usually the fields being compared hold the same type of data. For example, the
item field in one file can be compared with the item field in another file. Such a field is
often referred to as a key field. It is a field with which you can connect the data in one
field with another. However, two fields of the same type may have different field
positions in their respective files. The item field in one file may be field 1 and the item
field in another file could be field 2. In order to compare fields that have different
positions, you need to include a separate -j option and field number for each file. To
specify what file a given -j option refers to you need to also include a file number. The
file number refers to the position of the file name in the file list. The -j option can take a
file number as an argument. The file number is placed right next to the -j on the
command line. There is, of course, a space between the file number and the field
number. The option -j2 3 references the second file listed in the command line and the
third field in that file. Each file may have its own -j option.
 In the next example, the foodtypes file is a re-arranged version of the foods file in
which items is the second field and the food types the first field. The -j options are then
used to reference the items field(1 2) in the foodtypes file and compare it to the items
field(2 1) in the counts file.

foodtypes
fresh citris 3.00
lowfat milk 2.90
canned milk 1.50
vegetable soup 1.75
fresh vegetables 7.50

counts
milk 3
soup 8
vegetables 12

 $ join -j1 2 -j2 1 foodtypes counts > mylist
 $ cat mylist
 milk lowfat 2.90 3
 milk canned 1.50 3
 soup vegetable 1.75 8
 vegetables fresh 7.50 12

 If no -j option is used in the join filter then the first fields in each file are
compared by default. The three example below are equivalent. All would compare the
first fields of each file.

 $ join foodlist counts
 $ join -j 1 foodlist counts
 $ join -j1 1 -j2 1 foodlist counts

Selecting Output Fields: -o

 By default, the join command will output all the fields in both files. However,
the -o option lets you select what fields you want to output. It operates somewhat like
the cut filter, only outputting specified fields rather than the whole line. The -o option
takes as its argument a group of file and field numbers. A file number and a field number
are connected by a period. The file number references a specific file and the field
number specifies what field in the file is to be output. The file and field number 2.4
references the fourth field in the second file. You can list several file and field numbers,
separating each pair with a space. The group of file and field number 2.4 1.1
references the fourth field in the second file and the first field in the first file. In the next
example and in figure 14.4, the first field in the second file (2.1), the second field of the
second file (2.2), and the third field in the first file (1.3) are output as a result of
comparing the second field in foodtypes and the first field in counts.

 $ join -j1 2 -j2 1 -o 2.1 2.2 1.3 foodtypes counts >
mylist
 $ cat mylist
 milk 3 2.90
 milk 3 1.50
 soup 8 1.75
 vegetables 12 7.50

 You can combine join with other data filters to form more complex queries. In
the next example, the output from the previous query is piped into sort which then sorts
the lines according to the most expensive prices. The +2 option to sort skips the first two
fields and the nr options sorts the third field by number in reverse order.

 $ join -j1 2 -j2 1 -o 2.1 2.2 1.3 foodtypes counts |
sort +2nr
 vegetables 12 7.50
 milk 3 2.90
 soup 8 1.75
 milk 3 1.50

milk 3
soup 8
vegetables 12

fresh fruit 3.00
lowfat milk 2.90
canned milk 1.50
vegetable soup 1.75
fresh vegetables 7.50

��
��

join

foodtypes counts

mylist

fields 1 2 3

-o 2.1 2.2 1.3 outputs only the first
and second fields in the counts file as
wella s the thrid field in the foods file

fresh fruit 3.00
lowfat milk 2.90
canned milk 1.50
vegetable soup 1.75
fresh vegetables 7.50

$join -j1 2 -j2 1 -o 2.1 2..2 1.3 foodtypes counts > mylist

milk 3
soup 8
vegetables 12

1 2

foods fields

counts fields

3 milk 2.90
3 milk 1.50
8 soup 1.75
12 vegetables 7.50

3 milk 2.90
3 milk 1.50
8 soup 1.75
12 vegetables 7.50

1.3 2.1 2.2

-j1 2 -j2 1

-j1 2 and -j2 1 compares the
second field in foods file with
the first field in the counts file.

file #1 file #2

Figure 14.4. The join filter comparing different fields in each file and
outputting only a few selected fields.

Join Field Delimiters

 By default, the join filter assumes that fields are delimited with a space. If this
is not the case, you need to specify the delimiter being used in your files. You do so with
the -t option. The -t option takes a single character that is used as the field delimiter.
The -t option works in the same way as the -d option in the paste and cut commands.
For example, the option -t: designates the colon as the field delimiter in a file. The next
example joins fields delimited by semicolons. The title fields in the booksC and
purchasesC files are compared: field 1 in booksC (-j1 1) and field 4 in purchasesC (-
j2 4).

booksC
Christmas carol:Dickens:3.50:Academic
Iliad:Homer:10.25:Random
Raven:Poe:2.50:Penguin
War and Peace:Tolstoy:15.75:Penguin

purchasesC
marylou:San Diego:CA:Christmas carol
aleina:Barrow:AL:Christmas carol
valerie:Portland:OR:Raven
larisa:San Diego:CA:War and Peace

 $ join -t: -j1 1 -j2 4 booksC purchasesC
 Christmas carol:Dickens:3.50:Academic:marylou:San
Diego:CA
 Christmas carol:Dickens:3.50:Academic:aleina;Barrow:AL
 Raven :Poe:2.50:Penguin:valerie:Portland:OR
 War and Peace:Tolstoy:15.75:Penguin:larisa:San
Diego:CA

 You could also use a tab as a field delimiter. However, when you specify a tab as
the character used for the -t option, you need to first quote it with a backslash. A tab on
the command line is normally interpreted by the shell as just another space separating
arguments. You first enter the -t, a backslash, and then hit the tab key. The tab
character itself does not show up. In the next example, the booksT and purchasesT files
use tabs to delimit each field. The user then joins the files, comparing the title fields in
each: field 1 in booksT and field 4 in purchasesT. The field delimiter is specified with
the option: -t\tab. The tab, of course does not show.

booksT
Christmas carol Dickens 3.50 Academic
Iliad Homer 10.25 Random
Raven Poe 2.50 Penguin
War and Peace Tolstoy 15.75 Penguin

purchasesT
marylou San Diego CA Christmas carol
aleina Barrow AL Christmas carol
valerie Portland OR Raven
larisa San Diego CA War and Peace

 $ join -t\ -j1 1 -j2 4 booksT purchasesT
 Christmas carol Dickens 3.50 Academic marylou San
Diego CA
 Christmas carol Dickens 3.50 Academic aleina Barrow
AL
 Raven Poe 2.50 Penguin valerie
Portland OR
 War and Peace Tolstoy 15.75 Penguin larisa San
Diego CA

TTAABBLLEE 1144--44

The join filter:

 join
 The join filter joins the lines of different files if the values

of a specified field in each file matches.

 $ join -option file-list
 $ join -j1 2 -j2 1 foods counts

 -jfilenum fieldnum The -j option specifies what fields in each file are to be

compared. Each field is numbered from 1. If you are
comparing the same field in each file, you need only one -j
option and the fieldnum. If you are comparing different
fields in each file, then you need a -j option and filenum as
well as the fieldnum for each file. The filenum is the
position of the file's name in the file-list.

 -j fieldnum Compare the same field in each file. There is
a space between the -j option and the fieldnum.

 $ join -j 2 foods counts
 -jfilenum fieldnum Compare different fields in each file.
 $ join -j1 2 -j2 1 foodtypes counts

 -ofilenum.fieldnum The -o option specifies what fields in each file are to be

output. The filenum and fieldnum are separated by a period.
You can list several fields, separating each filenum .fieldnum
combination with a space.

 $ join -j1 2 -j2 1 -o 1.3 1.4 2.2 2.4
foodtypes counts

 -tdelimiter The -t option allows you to specify your own delimiter to

look for in a file. This is the same as the -d option in the
cut and paste filters.

 $ join -t: -j1 2 -j2 1 foodtypes
counts

 -afilenum The -a option outputs lines whose fields from a specified file

do not match, as well as matched fields from both files.. The
-a option takes a filenum to specify the file from which to
output unmatched lines.

 $ join -j1 2 -j2 1 -a1 foodtypes
counts

Uniq: repeated records

 The uniq filter is designed to detect repeated lines in a file. By default, uniq
eliminates successive repetitions of any lines from its output. In other words, uniq
filters out any duplicates of a line. uniq also has options that allow you to count how
many times a line is repeated, or detect and output only repeated lines. You can also look
for lines that are only partially the same, comparing lines either by characters or by fields.
Combined with other data filters, you can use uniq to examine specific fields.
 uniq can receive input from a file specified on the command line or from the
standard input. Output may be sent to a file or to the standard output. In the next
example and in figure 14.5, uniq reads its input from the itemlist file and sends output to
the standard output. Any duplicates of successive lines in the file are eliminated from the
output. Notice that the second line in itemlist is a duplicate of the first, and the second
line is missing in the output.

itemlist
chocolate milk 2.00
chocolate milk 2.00
lowfat milk 2.00
canned milk 2.00
fresh vegetables 7.00
lowfat milk 2.00

 $ uniq itemlist
 chocolate milk 2.00
 lowfat milk 2.00
 canned milk 2.00
 fresh vegetables 7.00
 lowfat milk 2.00

 In the previous example, the third and last lines are also duplicates, and the last
line is not eliminated from the output. This is because uniq only eliminates successive
duplicate lines. To eliminate all duplicate lines, you would first have to sort the file,
arranging duplicate lines next to each other. In the next example, the lines are first sorted
and then piped to uniq. In this case both lines 2 and 6 are eliminated from the output.

 $ sort itemlist | uniq
 canned milk 2.00
 chocolate milk 2.00
 fresh vegetables 7.00
 lowfat milk 2.00

chocolate milk 2.00
lowfat milk 2.00
canned milk 2.00
fresh vegetables 7.00
lowfat milk 2.00�

�
�

uniq

$uniq itemlist > ulist

ulist

uniq elimates the
repeated line

itemlist

chocolate milk 2.00
chocolate milk 2.00
lowfat milk 2.00
canned milk 2.00
fresh vegetables 7.00
lowfat milk 2.00

chocolate milk 2.00
chocolate milk 2.00
lowfat milk 2.00
canned milk 2.00
fresh vegetables 7.00
lowfat milk 2.00

chocolate milk 2.00
lowfat milk 2.00
canned milk 2.00
fresh vegetables 7.00
lowfat milk 2.00

Figure 14.5. The uniq filter eliminating repeated lines.

uniq Output, Input, and Options

 You can save the output of uniq either by redirecting the standard output or
specifying a second filename as an argument on the command line. When two files are
specified on the command line, the first is taken as the input file and the second is used as
the output file. This differs from other filters. On the uniq command line, you can
specify only one file for input. If you need to input more than one file you can first

combine them with cat and pipe them into as standard input into the uniq command. In
the first example the contents of itemlist is input to uniq and the output is placed in
outfile. Both files are command line arguments. In the second example the contents of
both itemlist and preface are combined by cat and piped as standard input to the uniq
filter. The output of the uniq filter is then sent to the standard output which is redirected
to the file outfile.

 $ uniq itemlist outfile

 $ cat itemlist foodlist | uniq > outfile

 uniq has three standard options: c, d, and u (see Table 5). The -c option directs
uniq to print out before each line the number of times the line is duplicated successively
in the file. The -d option outputs only repeated lines. The -u option outputs only lines
that are not repeated. In the next example, the -c option displays each line preceded by
the number of times it has been repeated.

 $ uniq -c itemlist
 2 chocolate milk 2.00
 1 fresh vegetables 7.00
 1 lowfat milk 2.00
 1 canned milk 2.00
 1 lowfat milk 2.00

 Combined with sort, uniq is able to detect duplicate lines throughout the file.

 $ sort itemlist | uniq -c
 1 canned milk 2.00
 2 chocolate milk 2.00
 1 fresh vegetables 7.00
 2 lowfat milk 2.00

 In the next example, the -d option only prints out successively repeated lines, in
this case the first line.

 $ uniq -d itemlist
 chocolate milk 2.00

 In the next example, the -u option outputs those line that are not repeated, in this
case lines 3, 4, 5, and 6. Lines 1 and 2 are successively identical.

 $ uniq -u itemlist
 lowfat milk 2.00
 canned milk 2.00
 fresh vegetables 7.00
 lowfat milk 2.00

 With sort, uniq can detect any duplications, not just the successive ones. In the
next example, uniq with the -u option will eliminate from the output lines 3 an 6 as well
as 1 and 2.

 $ sort itemlist | uniq -u
 canned milk 2.00
 fresh vegetables 7.00

uniq Field References

 uniq has the capability to test for partial duplication of lines. The field option,
permits uniq to ignore a set number of beginning fields on every line. The field option
is a minus sign followed by a number, -num. The number refers to the number of fields
in the beginning of a line that are to be ignored by uniq. Technically, a field is a set of
characters delimited by a tab or a space. With the field option, a number of beginning
fields on a line are ignored. Only the remaining fields on each line are tested for
duplication. In the next example, the user compares only the last two fields in each line
by ignoring the first field. If the last two fields in each line are the same, then they are
treated as duplicate lines. The first line with the repeated fields is output. Lines 1, 2, 3,
and 4 all have the same last two words: "milk 2.00". Line 5 is different: "vegetables
7.00", and line 6, though also "milk 2.0", is not successive.

itemlist
chocolate milk 2.00
chocolate milk 2.00
lowfat milk 2.00
canned milk 2.00
fresh vegetables 7.00
lowfat milk 2.00

 $ uniq -1 itemlist
 chocolate milk 2.00
 fresh vegetables 7.00
 lowfat milk 2.00

 Using sort to first sort the file on the second field would allow you to eliminate
all duplicates of the second and third field.

 $ sort +1 itemlist | uniq -1
 canned milk 2.00
 fresh vegetables 7.00

 You could combine the field option with other options such as the -c option. In
the next example, the count of each repeated line is output. Notice that the count for line
1 is 4. The last two words in lines 1, 2, 4, and 5 are the same: "milk 2.00".

 $ uniq -1 -c itemlist
 4 chocolate milk 2.00
 1 fresh vegetables 7.00
 1 lowfat milk 2.00

 A sorted version allow you to count all duplicates in the file.

 $ sort +1 itemlist | uniq -1 -c
 5 canned milk 2.00
 1 fresh vegetables 7.00

 Referencing fields in a file assumes that fields are delimited with specific
delimiter such as a tab. However, if you have a character based file such as a fixed
format file where fields are separated by padded spaces, then normal field references will
not work. In this case you will need to reference character positions. The uniq filter
allows you reference a character position and compare the remaining characters on a line.
uniq's character options actually ignores a set number of beginning characters on every
line. The character option is a plus sign followed by a number, +num. In this case, the
number refers to the number of characters at the beginning of the line that are to be
ignored. In the next example the listdataC file has its fields separated by padded spaces
rather than tabs. The +7 option instructs uniq to ignore the first 7 characters. After the
first seven characters, lines 3 and 4 in the listdataC file are successively the same as well
as lines 1 and 2. The first repeated line is output preceded by the number of repetitions,
in this case 2.

itemlistC
chocolate milk 2.00
chocolate milk 2.00
lowfat milk 2.00
canned milk 2.00
fresh vegetables 7.00
lowfat milk 2.00

 $ uniq +7 -d -c itemlistC
 2 chocolate milk 2.00
 2 lowfat milk 2.00
 1 fresh vegetables 7.00
 1 lowfat milk 2.00

Using uniq with other Data filters

 You can combine uniq with other data filters to examine different fields in a data
file. In itemlist, the third word in each line is the cost of an item. In this respect, the cost
of the item is the third field of a record. Using uniq you can find out how many items
have the same price. In the next example, the first two fields are skipped in order to
access the last field and a count of unique prices taken.

 $ sort +1 itemlist | uniq -2 -c
 5 canned milk 2.00
 1 fresh vegetables 7.00

 This does not quite give you what you need. You may really want only the value
of the field you are referencing output, instead of the entire line. You can do this by
using the cut filter to first copy out only one field in the file and have uniq operate on
that one field. In the next example, the user first cuts the 3rd field out of each line and
pipes it to uniq which then checks for repeated prices.

 $ cut -f3 itemlist | sort | uniq -c
 5 2.00
 1 7.00

 You could do the same thing to find out how many of each item that you have. In
the next example the user cuts out the second field and pipes it to uniq.

 $ cut -f2 itemlist | sort | uniq -c
 5 milk
 1 vegetables

 To list the less frequently referenced items at the top of your list you could sort
the output of uniq in sequential order. In the next example and in figure 14.6, the output
of uniq is sorted by sort to insure that the less frequently used items on the list are
listed first. The option -n for sort sorts in order numerically. Notice that there are two
sorts. The first sorts the data so that duplicate lines will be successive. The second sort
sorts the output of uniq.

 $ cut -f2 itemlist | sort | uniq -c | sort -n
 1 vegetables
 5 milk

 To list more frequently referenced items at the top of your list, you could perform
a reverse sort.

 $ cut -f2 itemlist | sort | uniq -c | sort -nr
 5 milk
 1 vegetables

��
��
��

cut

itemlist

chocolate milk 2.00
chocolate milk 2.00
lowfat milk 2.00
canned milk 2.00
fresh vegetables 7.00
lowfat milk 2.00

milk
milk
milk
milk
vegetables
milk

pipe

�
�
�

uniq
5 milk
1 vegetables

pipe

$cut -f2 itemlist | sort | uniq -c | sort -n > fewitems

��
��
��

sort

1 vegetables
5 milk

fewitems

1 vegetables
5 milk

chocolate milk 2.00
chocolate milk 2.00
lowfat milk 2.00
canned milk 2.00
fresh vegetables 7.00
lowfat milk 2.00

��
��
��

sort

milk
milk
milk
milk
milk
vegetables

pipe

Figure 14.6. Using several data filters to form a complex query to retrieve
information.

 Suppose, for example, you want to find out the month in which you worked on
files most. You would begin by piping the output of the ls -l command to a cut filter
to cut out the month field. Then use the sort filter to sort the months and use uniq -c
to count them. A sort by number would rank the output of uniq.

 $ ls -l | sed 's/ */ /g' | cut -f5 | sort | uniq -
c | sort -nr
 7 Mar
 2 Jun
 2 Feb
 1 Apr

TTAABBLLEE 1144--55

The uniq filter: repeated lines.

 uniq
 The uniq filter eliminates repeated lines from its input. You can

also compare lines base on selected fields. Lines whose selected fields have
the same values are considered repetitions and can be eliminated from the
output

 $ uniq options input-file output-file

 $ uniq -d itemlist newfile

 c With this option, uniq outputs each line preceded by the number of

times the line occurs in the input.
 $ uniq -c itemlist

 d With this option, uniq only outputs repeated lines.
 $ uniq -d itemlist

 u With this option, uniq only outputs lines that are not repeated.
 $ uniq -u itemlist

 -num The number of fields to be skipped for comparison. Only the

remaining fields are compared.
 $ uniq -3 itemlist

 +num The number of characters to be skipped for comparison. Only the

remaining characters are compared, including spaces.
 $ uniq +12 itemlist

Database Design

Databases are often organized into several files from which you can retrieve information
using a query language. In Unix, you can construct a database using several files and
then use the data filters to retrieve information. Often you will need to combine data
filters in complex ways, piping the output of one filter into another filter. The book
database below holds information about books, publishers, and purchases. It makes use
of three files: books, publishers, and purchases. The books file lists book titles,
authors, price, and publisher. The publishers file lists publishers along with the city and
state they are located. The purchases file list people who have bought the books and the
books they purchased, as well as the city and state where they bought them. Though you

cannot see them, each field is separated by a tab. This is the default delimiter for many of
the data filters.
 The books file has four data fields: the title, author, price, and publisher. The
publishers file has three data fields: the publisher, city, and state. The purchases file has
four data fields: the purchaser name, city, state, and title.

books
Tempest Shakespeare 15.75 Penguin
Christmas Dickens 3.50 Academic
Iliad Homer 10.25 Random
Raven Poe 2.50 Penguin

publisher
Penguin Boston MA
Academic Cambridge MA
Random Chicago IL

purchases
larisa Sacramento CA Tempest
marylou Sacramento CA Christmas
valerie Portland OR Raven
aleina Barrow AL Christmas
chris Sacramento CA Iliad
justin Napa CA Iliad
larisa Sacramento CA Raven

 You use key fields to retrieve information from your database. A key field is a
one that you use to query a file. If you wanted to list all your book information sorted by
title, you would use the title field in the books file as your key field. If you wanted to
sort by author, you would use the author field as your key field. In the next example, the
sort filter lists books by author. Notice how the first field is skipped and the sort is
stopped at the second field.

 $ sort +1 -2 books
 Christmas Dickens 3.50 Academic
 Iliad Homer 10.25 Random
 Raven Poe 2.50 Penguin
 Tempest Shakespeare 15.75 Penguin

 Certain fields are repeated in different files in order to connect the information in
those file together. For example, both the books file and the publisher file contain a field
for publisher. You can use the publisher field in each file to connect the information in
books with the information in publisher. For example, you could find out the address of
publishers that print a certain author. The address is in the publisher file and the author
name is in the books file. The books and purchases file both have in common a title
field. Through the title field in each you could find out who is buying what authors.

 This is, of course, a very simple design. Database design employs more
sophisticated strategies to connect information in different files. In relational database
design there are what are called normal forms that govern the organization of key fields
and database files. Due to the complexity of the subject, such concepts will not be
explored here.
 Using common fields to connect information in different files requires that you
use the join filter. The join filter will compare the values of selected fields and, if the
are the same, join and output their lines. The field value in one can match multiple
instances of the same value in another file. This permits a one-to-many relationship. The
one entry of a title in the books file can match several entries of that same title in the
purchases file. There is one limitation. The files mush first be sorted on the key field.
The multiple instances of a key must be sequentially combined in order to match a single
instance of a key in another file. In the next example the user first sorts books,
effectively sorting on the title field, saving the sorted version in the file bookst. Then the
user sorts the purchases file on its title field, the fourth field in the file. The result is
saved in purchst. Now the title fields in both bookst and purchst are sorted. The join
filter can then join the two files based on the title fields in each.

 $ sort books > bookst
 $ cat bookst
 Christmas Dickens 3.50 Academic
 Iliad Homer 10.25 Random
 Raven Poe 2.50 Penguin
 Tempest Shakespeare 15.75 Penguin

 $ sort +3 purchases > purchst
 $ cat purchst
 aleina Barrow AL Christmas
 marylou Sacramento CA Christmas
 chris Sacramento CA Iliad
 justin Napa CA Iliad
 larisa Sacramento CA Raven
 valerie Portland OR Raven
 larisa Sacramento CA Tempest

$ join -j1 4 -j2 1 purchst bookst
Christmas aleina Barrow AL Dickens 3.50 Academic
Christmas marylou Sacramento CA Dickens 3.50 Academic
Iliad chris Sacramento CA Homer 10.25 Random
Iliad justin Napa CA Homer 10.25 Random
Raven larisa Sacramento CA Poe 2.50 Penguin
Raven valerie Portland OR Poe 2.50 Penguin
Tempest larisa Sacramento CA Shakespeare 15.75 Penguin

 Instead of sorting your files each time you execute a join operation, you can
simply create a sorted version of your file for each key field. The key field for the books
file is the first field, the title. You could simply create a file called booksT that is a

version of books sorted by title. Similarly you could create a sorted version of the
purchases file using the title key field, the fourth field. In the next example the user
create a sorted version for each key field. booksT is a sorted version of books based on
the title, whereas booksP is a sorted version based on the publishers. purchasesT is a
sorted version based on the title, and purchasesT is a sorted version of purchases based
on the book titles.

 $ sort books > booksT
 $ sort +3 books > booksP
 $ sort +3 purchases > purchasesT
 $ sort publishers > publishersP

 In the next example, the user again finds out who purchased what titles using the
bookT and purchasesT files. These are the sorted versions of books and purchases
based on book titles.

 $ join -j1 1 -j2 4 booksT purchasesT

 Often you will not need to display all the fields in each file. You can use the
join filter's -o option to limit the fields displayed. In the next example, only the names
of purchasers, the book titles, and the authors of books are listed.

 $ join -j1 4 -j2 1 -o 1.1 2.1 2.2 purchasesT booksT
 aleina Christmas Dickens
 marylou Christmas Dickens
 chris Iliad Homer
 justin Iliad Homer
 larisa Raven Poe
 valerie Raven Poe
 larisa Tempest Shakespeare

Using Data filters to Construct Queries

 You can combine join with other data filters to construct complex queries.
Suppose you want to know how many people in California purchased the Iliad. You can
first join the purchases and the books files selecting the title and state fields. Then,
using uniq with its -c option generate a list with the count of each title in a State.

 $ join -j1 4 -j2 1 -o 1.3 1.4 purchasesT booksT |
sort > temp
 $ cat temp
 AL Christmas
 CA Christmas
 CA Iliad
 CA Iliad
 CA Raven
 CA Tempest
 OR Raven
 $ uniq -c temp | sort -t' ' -nr
 2 CA Iliad
 1 OR Raven
 1 CA Tempest
 1 CA Raven
 1 CA Christmas
 1 AL Christmas

 You can combine the entire process into one command using pipes.

$ join -j1 4 -j2 1 -o 1.3 1.4 purchasesT booksT | sort |
uniq -c | sort -nr

 You can perform the same kind operations with the publishers file. If you want
to find how many books are published in MA, you can use join to combine the
publishers and books files and then use uniq to count the number of books published in
each state. The key field for each file is the publisher field. The sorted version of the
books file based on the publishers field, booksP, and the sorted version of the publishers
file, publisherP, are used in the file list.

 $ join -j1 4 -j2 1 -o 2.3 booksP publishersP | sort >
temp
 $ cat temp
 MA
 MA
 MA
 IL
 $ uniq -c temp | sort -nr
 3 MA
 1 IL

 You can, of course, combine this query onto one command line using pipes.

 $ join -j1 4 -j2 1 -o 2.3 booksP publishersP | sort |
uniq -c | sort -nr
 3 MA
 1 IL

 The next query finds out in what cities the more expensive books are being sold.

$ join -j1 4 -j2 1 -o 1.2 1.3 2.3 purchasesT booksT | sort
+2nr
 Sacramento CA 15.75
 Napa CA 10.25
 Sacramento CA 10.25
 Barrow AL 3.50
 Sacramento CA 3.50
 Portland OR 2.50
 Sacramento CA 2.50

 You can even pipe the output from one join operation as input into another
join operation. Remember that a minus sign, -, stands for the standard input when used
as a file argument. You can use a - in place of a filename in a join's file list. In the
next example the output of first join operation is piped as the second file in the next
join operation. The query in this example gives you a list purchasers, the authors they
read, and the cities in which their books are published. First the purchases and books
are combined on the title field, selecting the publisher field(2.4) in books , the
purchasers field(1.1) in purchases, and the author(2.2) and in books. Then the resulting
data is piped to a sort filter that sorts it on the first field, publishers. The sort output is
then piped into the next join operation where it is combined with the publishers file on
the publisher's name field, selecting the purchaser name(1.2) and author(1.3) from the
combined piped data and the city(2.2) from the publishers file.

$ join -j1 4 -j2 1 -o 2.4 1.1 2.2 purchasesT booksT | sort
-1 | join -j1 1 -j2 1 -o 1.2 1.3 2.2 - publishersP | sort
 aleina Dickens Cambridge
 chris Homer Chicago
 justin Homer Chicago
 larisa Poe Boston
 larisa Shakespeare Boston
 marylou Dickens Cambridge
 valerie Poe Boston

Using Delimiters

 Many databases may have several words to a field, including spaces between the
words. For example, for a title you may need to enter "War and Peace" rather than a

single word title such as "Raven". The data filters read both spaces and tabs as the
default delimiters. If you want spaces to be ignored as delimiters, you need to specify a
delimiter character on the command line. For join and sort the delimiter is specified
with a -t option. For cut and paste it is specified with a -d option. If you want to use
tabs as your delimiter, yet ignore spaces, you need to specify the tab as a delimiter.
However, a tab as well as several other characters such as a '|', are shell metacharacters
and are used by the shell for evaluate commands. To avoid such interpretation by the
shell you need to quote a tab or any other shell character that you are specifying as a
delimiter. You can quote a character either be preceding it with a backslash or by
enclosing it in single quotes. In the case of a tab the actual tab character will not show.
 In the next example, the books and purchases files have had several different
records, each employing spaces in some of their fields. Each field is still separated by a
tab. However, to correctly reference a field, the user need to explicitly specify that the
tab is a delimiter.

books
War and Peace Tolstoy 15.75 Penguin
Christmas Carol Dickens 3.50 Academic
Iliad Homer 10.25 Random
Raven Poe 2.50 Penguin

publisher
Penguin Boston MA
Academic Cambridge MA
Random Chicago IL

purchases
larisa San Diego CA War and Peace
marylou San Diego CA Christmas carol
valerie Portland OR Raven
aleina Barrow AL Christmas carol
chris San Diego CA Iliad
justin Napa CA Iliad
larisa San Diego CA Raven

 In the next examples, the user again creates sorted versions of each file.
However, this time, the user needs to specify the tab delimiter. The user first enter the -
t, a backslash, and then hit the tab key. The tab character itself does not show up. The
field delimiter is specified with the option: -t\tab.

 $ sort -t\ books > booksTD
 $ sort -t\ +3 books > booksPD
 $ sort -t\ +3 purchases > purchasesTD
 $ sort -t\ +3 publishers > publishersPD

 You can, if you want, quote the tab by encasing it in single quotes. In the next
example, the user queries the booksTD and purchasesTD files, specify the delimiter
with a quoted tab: -t'tab'. The tab, of course, does not show up.

 $ join -t' ' -j1 4 -j2 1 purchasesTD booksTD
Christmas carol aleina Barrow AL Dickens 3.50 Academic
Christmas carol marylou San Diego CA Dickens 3.50 Academic
Iliad chris San Diego CA Homer 10.25 Random
Iliad justin Napa CA Homer 10.25 Random
Raven larisa San Diego CA Poe 2.50 Penguin
Raven valerie Portland OR Poe 2.50 Penguin
War and Peace larisa San Diego CA Tolstoy 15.75 Penguin

Chapter Summary: Data filters

 The sort, cut, paste, join, and uniq filters perform data operations on an
input data stream. Input is received either from files or the standard input. The filters
then outputs selected lines from the input. This output can then be directed to a file or a
device like a printer. The original input is not touched. If a file is used as input, it
remains unchanged.
 The sort, cut, paste, join, and uniq filters perform data operations on files
that have been organized into fields and records. The sort filter sorts records according
to a specified field. The cut filter outputs only specified fields in a record. The paste
command combines the records in data files. The join filter selectively combines
records in data files. The uniq filter deletes duplicate lines.

	14. Data Filters:sort, paste, cut, join, and uniq
	UNIX Data Files
	Sort
	Paste: combining records
	Join: Comparing Fields
	Uniq: repeated records
	Database Design
	Using Data filters to Construct Queries
	Using Delimiters
	Chapter Summary: Data filters

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /ZWAdobeF
]
 /NeverEmbed [true
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

